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because urban growth has decreased the amount of suitable 
habitat (Wolff et al. 2015; Ahlers et al. 2016). Moreover, 
many mammalian carnivores, such as bobcats (Lynx rufus), 
gray foxes (Urocyon cinereoargenteus), and mountain lions 
(Puma concolor) are becoming locally extinct in urban areas 
because of increased human disturbance and habitat loss 
(Crooks 2002; Ordeñana et al. 2010). However, some spe-
cies are able to acclimatize and physiologically adjust and 
respond to changes associated with urbanization (Kart et 
al. 2007). Scavengers and herbivores can take advantage of 
new anthropogenic environments by consuming food waste 
from humans due to the widespread and consistent avail-
ability (McKinney 2002; Sih et al. 2010; Birnie-Gauvin et 
al. 2016). Over time, urban-living individuals may begin 
to phenotypically diverge from their counterparts living in 
natural habitats as they acclimatize to a resource-filled envi-
ronment, such that urban-dwelling individuals may differ in 
body condition, colouration, or behaviour (McKinney 2002; 
Hasegawa et al. 2014; Lyons et al. 2017; Baxter-Gilbert et 
al. 2019).

Introduction

Urbanization – the process of altering a landscape for 
human settlement – is a global phenomenon (Shochat et al. 
2010; Faeth ert al., 2011; Saari et al. 2016) that has forced 
many species to respond to rapid environmental change 
(McKinney 2002; Partecke et al. 2006). The growth of cit-
ies often forces a species to try to survive in new urban 
habitats (Palmer 2003). For example, the American mink 
(Neovion vison) has low colonization rates near urban areas 
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Abstract
Urban spaces offer both benefits (elevated food resources from human food sources and fewer predators) and energetic 
costs (the physiological stress response related to human activity) to wildlife. We investigated whether chipmunks (Tamias 
striatus) experienced variation in fecal glucocorticoid metabolites (FGMs) and body condition across an urbanization 
gradient. We predicted that chipmunks in more urban environments would have lower levels of FGMs and be in better 
body condition, compared to chipmunks living in more natural areas resulting from the novel environments found in urban 
spaces, and increased food resources. Fecal samples and body measurements were collected from chipmunks across 20 
locations throughout Sudbury, Ontario, Canada to determine FGM concentrations and body condition, respectively. Each 
location was surveyed over a three-day period to determine the level of human activity to generate urbanization gradient 
scores. Our findings show a positive effect of an urbanization gradient on FGMs, suggesting chipmunks in more urban 
habitats exhibit higher levels of FGMs compared to conspecifics in less urban habitats. We also found that body condi-
tion was not related to urbanization, which may be because food is readily available within city limits. These findings 
highlight the importance of using an urbanization gradient to consider the effects of urbanization on stress-related metrics 
and consuming a human food waste diet on a small mammal species.
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Once an animal is introduced to an urban habitat, they 
encounter new environments associated with urbaniza-
tion and human activity (Palmer 2003; Tarlow and Blum-
stein 2007), including automobile and human traffic, noise 
and air pollution, destruction or alterations in habitat, and 
changes in predation and available diet (Sauvajot 1998; 
Hamer and McDonnell 2010; Fischer et al. 2014; Giraudeau 
et al. 2014). These factors may result in the activation of 
the hypothalamic-pituitary-adrenal (HPA axis). The HPA 
axis is a negative feedback system that begins to work when 
the hypothalamus releases corticotropin-releasing hormone 
(CRH). This triggers the anterior pituitary to release adre-
nocorticotrophic hormone (ACTH), followed by the adre-
nal cortex releasing a glucocorticoid hormone, such as 
corticosterone or cortisol (Sapolsky et al. 2000; Sapolsky 
2004; Kudielka and Kirschbaum 2005). Cortisol and corti-
costerone both increase the concentration of glucose in the 
bloodstream (therefore increasing energy availability) and 
promote the function of muscles or accelerate physiologi-
cal processes that are required to cope with an immediate 
stressor (Sapolsky et al. 2000; Sapolsky 2004; Kudielka 
and Kirschbaum 2005). The HPA axis is a mechanism that 
allows organisms to cope with short-term stress and return 
the body to homeostasis; however, over the long term, it can 
have negative fitness consequences. Prolonged or chronic 
elevation of glucocorticoid hormones may decrease immu-
nity, reproductive success, and overall well-being (Sapolsky 
et al. 2000; Romero and Wikelski 2001; Carlitz et al., 2016).

Many species exhibit differences in glucocorticoid lev-
els between urban or natural habitats (Atwell et al. 2012; 
Bonier 2012; Brearley et al. 2012; Deng et al. 2014). For 
example, cortisol levels in urban populations of various spe-
cies, such as eastern chipmunks (Tamias striatus; Lyons et 
al. 2017), dark-eyed juncos (Junco hyemalis; Atwell et al. 
2012), and tree lizards (Urosaurus ornatus; French et al. 
2008) are lower compared to their counterparts dwelling 
in their natural habitats. These populations may be adapt-
ing to urban habitats, emancipating them from the nega-
tive effects of chronic elevated cortisol levels (French et al. 
2008; Atwell et al. 2012; Lyons et al. 2017). However, in the 
short-term, individuals that disperse from natural to urban 
habitats may experience elevated glucocorticoids because 
of urban stressors (Partecke et al. 2006; Atwell et al. 2012). 
As a consequence, individuals living in urban and natural 
habitats may differ in life history traits, such as producing 
more or fewer offspring or size at birth (Boal and Mannan 
1999; Sprau et al., 2016).

Glucocorticoid levels have been historically quanti-
fied via blood samples (Goymann 2005; Montiglio et al. 
2012), but feces and urine are also used to quantify gluco-
corticoids (Palme, 2005, Sheriff et al., 2011). Fecal gluco-
corticoid metabolites (FGMs) are useful because they are 

less invasive to acquire and reflect an integrated average 
measure of circulating baseline glucocorticoid levels in the 
medium-term (over several hours to days) as compared to 
short-term fluctuations found in blood (Goymann 2005; 
Touma and Palme, 2005; Poessel et al., 2011).

As a result of a long-term increase in glucocorticoids from 
baseline levels, an individual may experience a decrease in 
body condition (Cote et al. 2010). Body condition estimates 
an individual’s energy reserves (Schulte-Hostedde et al. 
2005). Individuals with chronically high HPA axis activity 
may experience a decrease in body condition because they 
are using available energy to maintain homeostasis and may 
be unable to replenish fat reserves quickly enough to main-
tain their condition (Sapolsky et al. 2000; MacBeth et al. 
2012; Zwijacz-Kozica et al. 2013). These stress responses 
mediated by the HPA axis are energetically expensive 
because the body is using fat stores and undergoing gluco-
neogenesis to mobilize available energy to survive (Boissy 
1995; Kitaysky et al. 1999; Marin et al. 2007). For example, 
Cabezas et al. (2007) found that wild rabbits (Oryctolagus 
cuniculus) experienced a decrease in body condition when 
experimentally exposed to long-term stressors because of 
an increase in glucocorticoid blood levels. In the context 
of urbanization, however, little is known about how body 
condition may change over an urbanization gradient, and 
if this change may be correlated with cortisol levels. It is 
also important to consider that body condition may change 
across a gradient in response to anthropogenic food subsi-
dies. Human food waste continues to be accessible to urban 
wildlife through waste receptacles, bird feeders, and direct 
feeding from humans to wildlife (Newsome and van Eeden 
2017). Since urban and natural dwelling animals may have 
access to different amounts of food resources, changes 
in body condition or energetic reserves are expected. For 
example, Lyons et al. (2017) found that female eastern 
chipmunks from urban areas were in better body condition 
than those from natural areas, suggesting that females have 
more energy reserves, likely from consuming food through 
anthropogenic sources.

The effects of urbanization on wildlife have generally 
been characterized by defining urbanization categorically. 
Populations are defined as originating from either natural 
or urban habitats (Sears 1989; Iglesias-Carrasco et al. 2017; 
Lyons et al. 2017; Shimamoto et al. 2019; but see Meillère 
et al. 2016; Price et al. 2018; Szulkin et al. 2020). While 
classifying habitat as either “urban” or “natural” is com-
mon in urban ecology, alternative approaches can be more 
nuanced. Urbanization can be described as a gradient, rang-
ing from urban parks to the concrete and asphalt of build-
ings and roads. For example, Price et al. (2018) generated an 
urbanization gradient (referred to as the rural-urban score) to 
examine cortisol concentrations in yellow-bellied marmots 
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(Marmota flaviventris) and measured various anthropogenic 
variables to determine how “urban” or “natural” their study 
locations were. Defining and measuring a series of variables 
that can distinguish a more urban area from a more natural 
habitat could provide more accurate interpretations related 
to the impacts an urban environment may have on a given 
species.

Human food waste should be more prevalent in habitats 
that are more urban along an urbanization gradient, specifi-
cally areas that produce the most food waste, such as areas 
with grocery stores and restaurants or residential neigh-
bourhoods. We investigated FGM concentrations and body 
condition of eastern chipmunks (Tamias striatus) in rela-
tion to an urbanization gradient within a city. We predicted 
that chipmunks in more urban habitats would exhibit lower 
FGM levels and greater energy reserves (reflected by body 
condition) compared to chipmunks living in more natural 
habitats. In more urban habitats, chipmunks may be con-
suming readily available and abundant anthropogenic food 
waste and therefore may have more energy to invest into 
their body condition, whereas chipmunks in more natural 
habitats have to exert greater amounts of energy to forage 
for food and may experience higher levels of FGMs since 
they must forage greater distances for natural food sources 
(Lyons et al. 2017).

Methods

Study sites

Adult eastern chipmunks were sampled from early April 
until late August of 2019 throughout Sudbury, Ontario, Can-
ada (46.4917oN, 80.9930oW). A total of 20 study sites were 
sampled including four locations within a conservation area 
(Lake Laurentian), a single location on an extensive trail 
system (Kelly Lake Trail), three locations within a public 
park (Bell Park), four locations at Laurentian University, 
and eight backyards located throughout Sudbury (Fig.  1). 
Sherman traps (H.B. Sherman Inc., Tallahassee, Florida) 
were set at all 20 locations, near areas with dense vegetation 
cover, and in areas where chipmunk burrows were found. 
Approximately 80–100 traps (10 traps per site, on average 
2 m apart from each other) were baited with peanut butter 
and oats every day at 07:00 and checked every two hours 
until 16:00. Traps were set at each location twice a week.

Trapping and sample collection

Upon capture, chipmunks were transferred into a handling 
bag and the reproductive state and age were assessed. Males 
were classified as non-reproductive or reproductive (scrotal), 

while females were classified as non-reproductive or repro-
ductive (either lactating or pregnant). Age was determined 
by mass, such that a chipmunk under 80 g at the time of 
the initial capturewas considered a juvenile, while over 80 g 
was considered an adult (Patterson and Schulte-Hostedde 
2011). Each chipmunk was weighed using a Pesola® scale 
(± 0.1 g), and morphometric measurements were obtained 
using a ruler (± 1 mm) and caliper (± 0.1 mm). The mor-
phometric data that was collected included skull length and 
width, hindfoot length, and body mass (Schulte-Hostedde 
and Millar 2000; Lyons et al. 2017).

At initial capture, each of the 59 chipmunks was given 
a metal ear tag with a unique number sequence (National 
Band and Tag Company, Newport, Kentucky), allowing 
individual identification. Fecal samples were collected by 
removing feces from traps or collecting them directly from 
the individual during handling. A single fecal sample was 
collected and analyzed for each individual chipmunk, even 
if the chipmunk was recaptured. Following the protocol of 
Palme et al. (2005), the fecal samples were placed in 3 mL 
centrifuge tubes with 1 mL of 80% methanol per 0.1 g of 
fresh feces to preserve the sample for FGM analysis. The 
samples were refrigerated at -20oC until they were used for 
analysis. Our methods followed the guidelines promoted by 
the Canadian Council on Animal Care and were accepted by 
the Animal Care Committee at Laurentian University (AUP 
2019-04-24).

Hormone extraction

The stored fecal samples (n = 59) were transferred from 2 ml 
pre-weighed polypropylene tubes into glass tubes. One mil-
lilitre of 100% methanol was used to rinse the polypropyl-
ene tube and the remainder was pipetted into the glass tube. 
All samples were left to evaporate under a fume hood for 
approximately 48 h. Glass tubes were re-weighed to deter-
mine fecal weights, and 80% methanol in water was added 
at a ratio of 0.05 g/ml. Samples were vortexed and mixed 
overnight on a plate shaker. Supernatants from extracted 
samples were stored at -20oC until analysis.

The use of FGM has been validated in eastern chipmunks 
(Montiglio et al. 2012). The samples were analyzed for 
FGM concentrations in duplicates using the methods fol-
lowing Dulude-de Broin et al. (2019). This method is used 
by the Toronto Zoo Endocrinology Laboratory across spe-
cies to determine FGM concentrations. However, the FGM 
antiserum and horseradish peroxidase conjugate in our anal-
ysis was diluted to 1:10 000 and 1:33 500, respectively.

Each plate was coated with antiserum and left overnight 
to cool at 4oC in a fridge. The following day, the plates were 
washed and loaded with the standards, samples, controls, 
and horseradish peroxidase conjugate. The plate was then 
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the number of trash cans found within a 100 m radius of 
the trapline, and the number of bird feeders found within 
a 100  m radius of the trapline. Trash was defined as any 
item on the ground that could be held in a trash can, ranging 
from wrappers and recyclables to peanut shells. Trash cans 
were defined as any bin that could hold food waste, such as 
typical garbage bins or compost bins. In lieu of counting the 
number of cars per hour on busy major roads and highways, 
such as roads near Bell Park and Kelly Lake Trail, an aver-
age number of cars per hour was determined from traffic 
data supplied from the Ontario Ministry of Transportation 
to the City of Greater Sudbury (Greater Sudbury Statistics, 
2017). All variables were collected from 07:00–13:00 over 
a three-day period at each study site. After the three-day 
observation period concluded, averages of all measured 
variables were calculated, which generated a single number 
for each variable measured per location (Price et al. 2018).

We determined the type of land cover found at all study 
sites within a 100 m radius using the 2015 Land Cover of 
Canada map (Latifovic et al. 2017; Price et al. 2018; Latifo-
vic 2019). A 100 m radius ensured that land cover was con-
sistently and equally measured across study sites, allowing 
us to extract numerical data for vegetation cover within the 
radius across locations. The categories of land cover found 
at various study sites included: sub-polar taiga needleleaf 
forest, temperate or sub-polar shrubland, temperate or sub-
polar broadleaf deciduous forest, mixed forest, barren land, 
and urban sites (See Supplementary Table 1).

left to sit for two hours at room temperature and 100  µl 
substrate solution was subsequently added. Using a spectro-
photometer (MRX microplate reader, Dynex Technologies, 
Chantilly, VA), absorbance was measured at 405 nm.

To assess repeatability of results, calculation of intra- 
and inter-assay coefficients of variation (CV) was evalu-
ated. Intra-assay CVs were consistently monitored on each 
plate in real time by examining the CV of each duplicate 
run on the plate. Only values from duplicates with <10% 
CV were recorded as data. Inter-assay CVs were evalu-
ated using fecal extract controls (23% and 60% binding) 
loaded in duplicate on each plate. Serial dilutions of pooled 
fecal extract showed parallel displacement with the corti-
sol standard curve (t = 0.24, p = 0.81, df = 8). The recov-
ery of known concentrations of cortisol was 90.4% ± 5.8 
(mean ± SE). The measured hormone concentrations in the 
spiked samples correlated with the expected concentrations 
of cortisol (r = 0.99, p > 0.001; Fig #). Inter-assay CVs were 
5.3% (23% binding) and 7.5% (60% binding) (Standard 
curve provided as Supplemental Fig. 3).

Natural-urban score (NUS) data collection

Using methods outlined in Price et al. (2018), we completed 
surveys and used land cover data to generate a score that 
represented how urban or natural each study site was (the 
natural-urban score; NUS). While conducting surveys, we 
monitored the number of pedestrians, dogs, cars, and bikes 
that passed by all study sites in an hour, the number of 
trash pieces found within a 100  m radius of the trapline, 

Fig. 1  Map of the 20 study 
sites visited and the respective 
land cover types found at each 
study site for eastern chipmunks 
(Tamias striatus) generated from 
the 2015 Land Cover of Canada 
map (Latifovic et al. 2017; Lati-
fovic 2019). Study sites included 
8 backyards (1, 3–5, 17–20), 
Bell Park (14–16), Laurentian 
University campus (6–9), Lake 
Laurentian Conservation Area 
(10–13), and Kelly Lake Trail 
(2). (See Supplemental Table 1 
for land cover types for each 
study site)
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(Schulte-Hostedde et al. 2005; Lyons et al. 2017). Lastly, 
FGM concentrations were log-transformed to meet normal-
ity assumptions.

We tested our hypotheses with two generalized linear 
models. Our first model examined the effect of urbanization 
on body condition while statistically controlling for sex, 
reproductive condition, FGM concentrations, and Julian 
date. Our second model tested for effects of urbanization on 
FGM concentrations while statistically controlling for sex, 
reproductive condition, Julian date, and body condition. For 
each model we first tested the interactions between FGM 
concentrations and NUS, NUS and anthropogenic food 
sources, population density and NUS, NUS and body condi-
tion, and FGM concentration and sex. If interactions were 
not significant, we reran the models without the interaction 
term.

Results

Sample size

We captured and sampled a total of 59 chipmunks − 41 
females and 18 males. Of the 59 chipmunks sampled, 32 
chipmunks were from backyards, 16 chipmunks were from 
Bell Park, 5 chipmunks were from Lake Laurentian Conser-
vation Area, 2 chipmunks were from Kelly Lake Trail, and 
4 chipmunks were from Laurentian University.

Natural-urban score (NUS) PCA

PC1 explained 44.9% of the variation within the surveying 
data and land cover map data (Table 1), while PC2 explained 
20.3% of the variation (Table 1). PC1 tended to distinguish 
the degree of urbanity among locations (e.g. a more positive 
factor represents a variable associated with a more urban 
area, while a more negative factor represents a variable asso-
ciated with a natural area), while PC2 tended to discriminate 
food resources from non-food resources (Table 1). The aver-
age number of pedestrians per hour was the factor that had 
a strong positive relationship to PC1 (0.423; Table 1), while 
vegetation cover had a strong negative relationship to PC1 
(-0.297; Table 1). The average number of trash cans found 
within a 100 m radius of the trapline had a strong positive 
relationship to PC2 (0.521, Table 1), while the average num-
ber of bikes per hour was found to be the opposite (-0.478; 
Table 1). Because PC1 had the greatest variation and dis-
tinguished the degree of urbanization between variables, it 
was used as our estimate NUS for each site. A more positive 
NUS value indicates a more urban area, while a more nega-
tive NUS value indicates a less urban area (Fig. 2). PC2 was 
indicative of anthropogenic food sources.

Statistical analysis of NUS

All statistical analyses were performed using R (version 
3.6.2, R Core Team, 2019). The land cover data, as well as 
surveyed observations were summarized with a principal 
component analysis (PCA) that generated a natural-urban 
score for each site (Fig. 2; Table 1).

Population size and density

To estimate chipmunk population size at each study site, 
the Lincoln-Peterson Index was used because chipmunks 
were captured, marked, and had the opportunity to be recap-
tured (Lancia et al. 1994; Tenzin et al. 2015). The formula is 
N = MS

R , where N represents the population size estimate, 
M is the number of marked chipmunks released, S is the 
total number of chipmunks trapped, and R is the number 
of chipmunks in that sample that were marked (Lancia et 
al. 1994; Tenzin et al. 2015). Next, the area of each trap 
site (in m2) was calculated using Google Maps (2020) using 
the minimum convex polygon method (Burgman and Fox 
2002). Then, the population size estimate was divided by 
the area of the trapline to determine population density 
(chipmunks per m2; See Supplementary Table 2).

Statistical analysis of FGM concentrations, body 
condition, and NUS

We used the average skull length, skull width, and hindfoot 
length (log-transformed) of each individual to determine 
body size, (Schulte-Hostedde et al. 2005; Lyons et al. 2017). 
A PCA was performed to calculate a measure of overall size, 
and then the PC1 scores were extracted. Log-transformed 
values for body mass and PC1 scores were inputted into a 
simple linear regression and the residuals were calculated 
to represent the body condition score of each individual 

Fig. 2  Bar graph of NUS (natural-urban scores) from all study sites 
1 to 20. On the y axis, positive values indicate more urban areas and 
negative values indicate more natural areas
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FGM generalized linear model

FGMs were found to be significantly associated with NUS 
(t = 2.13, p = 0.02, Table 3), and was therefore presented as a 
bivariate model (Fig. 3). Additionally, FGM concentrations 
were not related to population density (t=-1.20, p = 0.23, 
Table  3), anthropogenic food sources (t = 0.14, p = 0.88, 
Table  3), sex (t=-0.28, p = 0.77, Table  3), reproductive 
condition (t = 0.92, p = 0.35, Table 3), Julian date (t=-0.43, 
p = 0.66, Table 3, Supplemental Fig. 2), or body condition 
(t = 0.83, p = 0.40, Table 3).

Discussion

We found a significant effect of the urbanization gradient on 
FGM concentrations from chipmunks, such that chipmunks 
from the most urban areas exhibited the highest levels of 
FGMs. However, we observed no significant effect of the 
urbanization gradient on the body condition of chipmunks. 

Body condition residuals

PC1 explained 44.7% in the body condition variation, 
and all loadings were positive (skull length = 0.653, skull 
width = 0.674, and hindfood length 0.345). The linear 
regression of log-transformed body mass and PC1 scores 
displayed a positive relationship, thus all residuals could be 
extracted to represent body size to describe PC1 in subse-
quent analyses (See Supplementary Fig. 1).

Body condition generalized linear model

Body condition was not related to FGMs (t = 0.83, p = 0.40, 
Table  2) or NUS (t=-1.23, p = 0.22, Table  2). Addition-
ally, body condition was not related to population density 
(t = 1.50, p = 0.13, Table  2), anthropogenic food sources 
(t = 0.26, p = 0.70, Table 2), sex (t=-0.12 p = 0.90, Table 2), 
reproductive condition (t = 1.55, p = 0.12, Table 2), or Julian 
date (t = 1.21, p = 0.22, Table 2).

Table 2   A global generalized linear model examining body condi-
tion for eastern chipmunks (Tamias striatus; n = 59) in response to 
log(FMG), population density, NUS, anthropogenic food sources, sex, 
reproductive condition, and Julian date in Sudbury, Ontario
Variable Estimate Stan-

dard 
Error

t-value p-value Adjusted 
R2

Intercept -0.12 0.07 -1.69 0.09 0.02
Log (FMG) 0.01 0.01 0.83 0.40
Population 
density

1.12 0.74 1.50 0.13

NUS* < 0.01 < 0.01 -1.23 0.22
Anthropo-
genic food 
sources

< 0.01 < 0.01 0.26 0.70

Sex < 0.01 0.01 -0.12 0.90
Reproductive 
Condition

0.02 0.01 1.55 0.12

Julian date < 0.01 < 0.01 1.21 0.22
*NUS, natural urban score representing the values used to generate 
the urbanization

Table 3   A global generalized linear model examining FMG concen-
trations for eastern chipmunks (Tamias striatus; n = 59) in response to 
population density, NUS, anthropogenic food sources, sex, reproduc-
tive condition, Julian date, and body condition in Sudbury, Ontario
Variable Estimate Stan-

dard 
Error

t-value p-value Adjusted 
R2

Intercept 2.72 0.41 6.58 < 0.01 0.02
Population 
density

-6.68 5.54 -1.20 0.23

NUS* 0.07 0.03 2.13 0.02
Anthropo-
genic food 
sources

< 0.01 0.04 0.14 0.88

Sex -0.03 0.13 -0.28 0.77
Reproductive 
condition

0.13 0.14 0.92 0.35

Julian date < 0.01 < 0.01 -0.43 0.66
Body 
condition

0.85 1.02 0.83 0.40

*NUS, natural urban score representing the values used to generate 
the urbanization

Variable PC1 Loadings PC2 Loadings
Average number of pedestrians per hour 0.423 0.315
Average number of cars per hour 0.381 -0.097
Average number of bikes per hour 0.377 -0.478
Average number of trash pieces found within 
100 m radius of the trapline

0.375 -0.332

Average number of dogs per hour 0.362 -0.338
Average number of trash cans found within 
100 m radius of the trapline

0.332 0.521

Average number bird feeders found within 
100 m radius of the trapline

0.251 0.312

Vegetation cover -0.297 -0.274

Table 1  A PCA analysis was con-
ducted to create the scores for the 
urbanization gradient based on 
the habitats of eastern chipmunks 
(Tamias striatus). A summary of 
PC1 and PC2 loadings consist-
ing of all variables surveyed at 
each study site and land cover 
data in Sudbury, Ontario. PC1 
explains 44.9% of the variation in 
the dataset, while PC2 explains 
20.3%
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whereas Lyons et al. (2017) used natural sites that were not 
within the city. Thus, although our results appear to contra-
dict Lyons et al. (2017), it clear that our methodology was 
more specific to an urban context.

Chipmunks exhibit higher levels of FGMs in urban sites; 
therefore, it is possible that urban habitats may be consid-
ered “stressful” by chipmunks, compared to their natural 
habitats. The natural-urban score was correlated with vari-
ables related to human activity, including the presence of 
pedestrians, cars, bikes, and dogs. These types of activi-
ties are known to increase measures of stress in many spe-
cies, such as wildcats (Felis silvestris; Pinerio et al. 2012), 
swamp rats (Scapteromys aquaticus) and Azara’s grass mice 
(Akodon azarae; Gomez-Villafane et al. 2012) as well as 
woodland caribou (Rangifer tarandus; Ewacha et al. 2017). 
Young marmots may perceive dogs as predators in urban 
habitats based on their fecal glucocorticoid results (Price et 
al. 2018). For this reason, it is not surprising that chipmunks 
experience an increase in FGM concentrations near the 
most urban area within the gradient, as these areas had the 
most human and dog presence. These findings also explain 
why we did not find a significant interaction between FGMs 
and body condition as predicted. The energetic cost of ele-
vated HPA axis activity may be mitigated by the increased 
availability of food resources found in more urban sites. In 
other words, while elevated FGMs may be stimulated by 
the activities of humans and dogs, the energetic costs of this 
may be offset by the presence of food subsidies via human 
food waste in an urban setting.

High concentrations of FGMs are not in of themselves 
“bad” – that is, activation of the HPA axis and the secre-
tion of glucocorticoids is an adaptation meant to mobilize 
energy in the face of one or more stressors. However, given 
that the stressors associated with urbanization are inherent 

These results partially support our initial predictions but 
the lack of effect of urbanization on body condition was 
surprising.

It is possible that chipmunks in urban habitats may have 
access to enough food resources to maintain body condition, 
regardless of FGM concentrations, especially because all of 
our study sites fell within Sudbury city limits (Kitaysky et 
al. 1999; Bonier et al. 2007). For example, a study examin-
ing the diet of herring gulls (Larus argentatus) found that 
those gulls feeding on human food waste were consuming a 
diet that had a higher caloric value, protein content, and fat 
content than a natural diet (Pierotti and Annett 1990, 1991). 
Although we did not examine diet composition or quality, it 
is possible, like herring gulls, that chipmunks may be con-
suming a diet that allows them to maintain body condition, 
despite experiencing higher levels of FGMs than their less 
urban counterparts. Chipmunks in more natural areas may 
still have access to anthropogenic food resources from trav-
elling to more urban areas within their home range, or from 
humans directly providing food, for example, hiking on 
trail systems. In other words, the trade-off that should exist 
between body condition and elevated cortisol levels may be 
mitigated by the access to high-energy anthropogenic food 
resources.

The results from this study appear to contradict Lyons 
et al. (2017), where eastern chipmunks in urban habitats 
had lower FGM levels than those in natural habitats, and 
in which females had elevated body condition in urban 
habitats. We quantified the level of urbanization at each 
study site, while Lyons et al. (2017) categorically defined 
an urban versus natural habitat. Our study also accounted 
for the degree of urbanization by quantifying human activ-
ity and possible food sources (e.g. trash pieces and garbage 
bins). In addition, our study was exclusively within a city, 

Fig. 3  Linear regression of partial 
residuals of fecal glucocorticoid 
metabolite (FMG) concentrations 
from eastern chipmunks (Tamias 
striatus) over the natural-urban 
score (NUS; p = 0.02, r2 = 0.06, 
n = 59). On the x axis, positive 
values indicate more urban areas 
and negative values indicate 
more natural areas. The shaded 
area denotes a 95% confidence 
interval
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habitats may experience higher levels of glucocorticoids 
because of increased human disturbance. Our study shows 
that despite the higher levels of FGM concentrations in 
chipmunks from more urban areas, they do not differ in 
body condition along the urbanization gradient, which may 
be related to the abundance of food resources within city 
limits. These findings highlight the importance of consider-
ing the level of urbanization in a particular area to better 
understand how animals are responding to the presence of 
anthropogenic elements within their habitats, since urban-
ization is impacting wildlife globally.
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